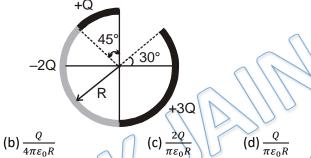


DPP – 4 (Electrostatics)

Video Solution on Website:-

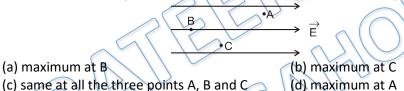
https://physicsaholics.com/home/courseDetails/93


Video Solution on YouTube:-

https://youtu.be/OlriAKSU7iM

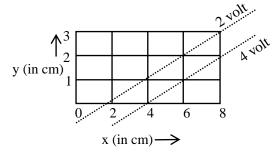
Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39


Figure shows three circular arcs, each of radius R and total charge as indicated. The net Q1. electric potential at the centre of curvature is:

(a) $\frac{Q}{2\pi\varepsilon_0 R}$

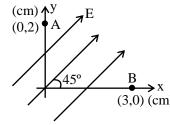
(a) maximum at B

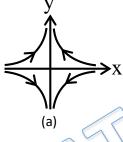

- (c) $\frac{2 \sqrt{\pi \varepsilon_0 R}}{\pi \varepsilon_0 R}$
- A, B and C are three points in a uniform electric field. The electric potential is Q 2.

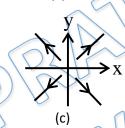
In a region the potential is represented by V(x, y, z) = 6x - 8xy - 8y + 6yz, where V is in volts Q 3. and x, y, z, are in meters. The electric force experienced by a charge of 2 coulomb situated at

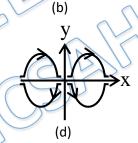
point (1, 1,1) is:

- (a) $6\sqrt{5}N$
- (b) 30N
- (c) 24N
- (d) $4\sqrt{35}$ N
- Figure below shows two equipotential lines in xy-plane for an electric field. The scales are Q 4. marked. Electric field in the space between these equipotential lines are respectively


- (a) + 100 i 200 j V/m
- (b) -100 i + 200 j V/m
- (c) + 200 i+ 100 j V/m
- (d) 200 i 100 j V/m

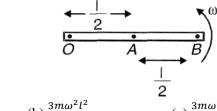

Physicsaholics


- Q 5. The equation of an equipotential line in an electric field is y = 2x, then the electric field strength vector at (1, 2) may be -
 - (a) 4i + 3j
- (b) 4 i + 8j
- (c) 8 i + 4 j
- (d) 8i + 4j
- Q 6. A uniform electric field of 400 V/m is directed at 45 $^{\circ}$ above the x-axis as shown in figure. The potential difference $V_A V_B$ is given by—



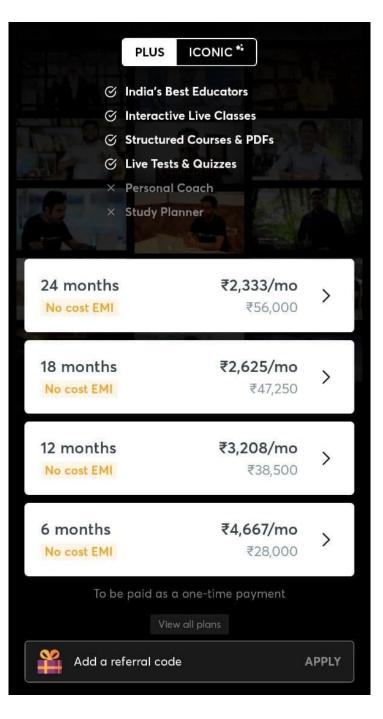
- (a) 0 V
- (b) 4V
- (c) 6.4V
- (d) 2.8V
- Q 7. The potential field depends on x and y coordinates as $V = (x^2 y^2)$. Corresponding electric field lines in x-y plane as shown in Fig -

x 3

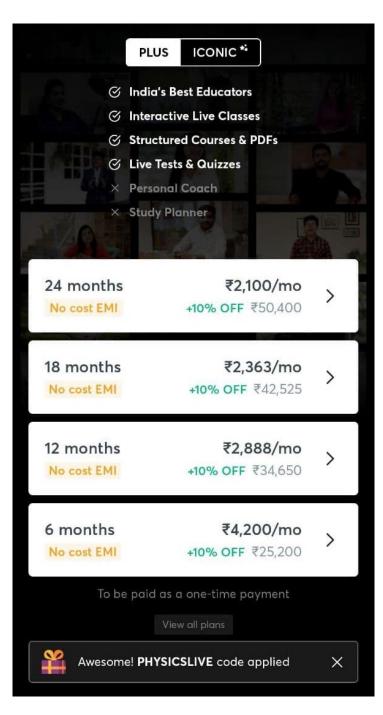

- Q 8. The potential field of an electric field $\vec{E} = (y\hat{i} + x\hat{j})$ is
 - (a) V = -xy + constant
- (b) V = -(x + y) + constant
- (c) $V = -(x^2 + y^2) + constant$
- (d) V = constant
- Q 9. A nonconducting ring of radius 0.5 m carries a total charge of $1.11 \times 10^{-10}\,\text{C}$ distributed nonuniformly on its circumference, producing an electric field \vec{E} everywhere in space. The value of the line integral $\int_{l=\infty}^{l=0} -\vec{E}.\, \overrightarrow{dl}$ (l=0 being the centre of the ring) in volts is
 - (a) +2
- (b) -1
- (c) -2
- (d) 0
- Q 10. Two points are at distances a and b (a < b) from a long string of charge per unit length λ . The potential difference between the points is proportional to
 - (a) $\frac{b}{a}$
- (b) $\frac{b^2}{a^2}$
- (c) $\sqrt{\frac{b}{a}}$
- (d) ln (b/a)
- Q 11. On the axis of uniformly charged ring of radius R magnitude of rate of change of potential is maximum at

hysicsaholics

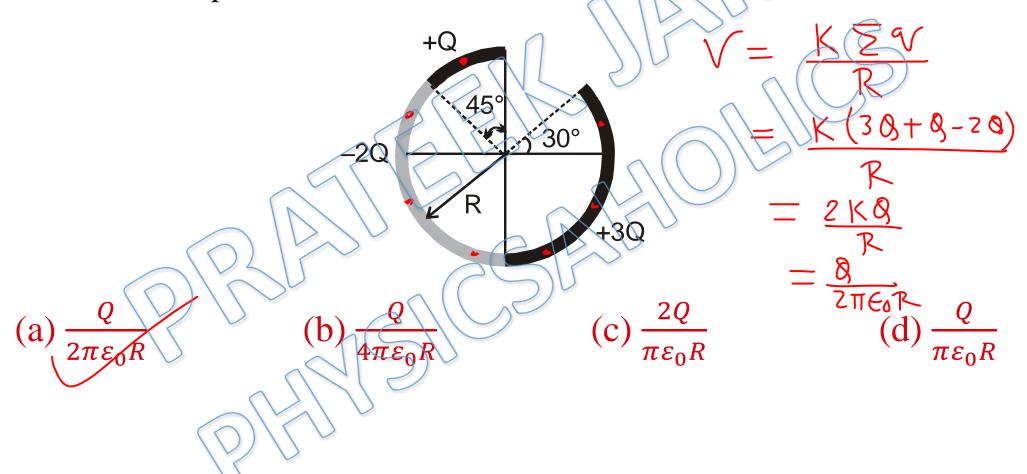
- (a) Centre of ring
- (b) Distance .5R from centre of ring
- (c) Distance .7R from centre of ring
- (d) Distance R from ring
- Q 12. A conducting rod of length L rotates about its one end with angular velocity ω Potential difference between A and B is {m & e = mass and charge on electron}

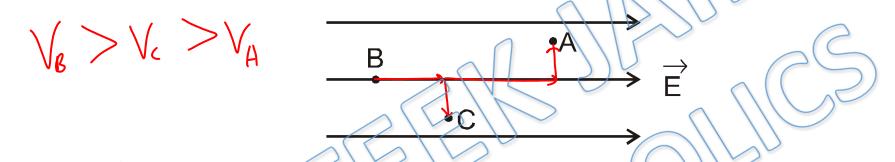

- (a) $\frac{m\omega^2 l^2}{e}$

- (d) zero
- Q 13. In a uniform electric field, the potential of origin is V and V/2 at each of the points (a, 0, 0), (0, b, 0), (0, 0, c). The potential at (a, b, c) will be
 - (a) V/2
- (b) -3V/2


Answer Key

Q.1 a	Q.2 a	Q.3 d	Q.4 b	Q.5 d
Q.6 d	Q.7 a	Q.8 a	Q.9 a	Q.10 d
Q.11 c	Q.12 c	Q.13 c		


Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.


Written Solution

DPP- 4 Electrostatics : Electric Potential By Physicsaholics Team

Q1) Figure shows three circular arcs, each of radius R and total charge as indicated. The net electric potential at the centre of curvature is:

Q2) A, B and C are three points in a uniform electric field. The electric potential is:

(A) maximum at B

- (B) maximum at C
- (C) same at all the three points A, B and C (D)
 - (D) maximum at A

Q3) In a region the potential is represented by V(x, y, z) = 6x - 8xy - 8y + 6yz, where V is in volts and x, y, z, are in meters. The electric force experienced by a charge of 2 coulomb situated at point (x, y, z) = 6x - 8xy - 8y + 6yz,

(1, 1, 1) is:

$$E_{x} = -\frac{3V}{3x} = -\left[6 + 8y\right] = -\left[6 - 8\right] = 2$$

$$E_{y} = -\frac{3V}{3y} = -\left[-8x - 8 + 6z\right] = -\left[-8 - 8 + 6\right] = 10$$

$$E_{x} = -\frac{3V}{3y} = -\left[-6y\right] = -6$$

(a) $6\sqrt{5}N$

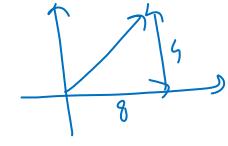
(b) 30N

$$\vec{E} = 2\hat{i} + 10\hat{j} - 6\hat{k}$$

$$\vec{F} = 9\vec{F} = 2[2\hat{i} + 10\hat{j} - 6\hat{k}]$$

$$F = 2\sqrt{4+100+36} = 2\sqrt{140} = 4\sqrt{35}N$$

Q4) Figure below shows two equipotential lines in xy-plane for an electric field. The


scales are marked. Electric field in the space between these equipotential lines are respectively (a) + 100 i - 200 j V/m(b) - 100 i + 200 j V/m y (in cm) X= (onstant (c) + 200 i + 100 $x \text{ (in cm)} \xrightarrow{\Delta} x = 20 \text{ and } \Delta V = 4 - 2 = 2 \text{ V}$ (d) - 200iXED y=(onstant

Q5) The equation of an equipotential line in an electric field is y = 2x, then the electric field strength vector at (1, 2) may be -

$$+3i$$
 (b) $4i + 8i$

$$m_1 m_2 = -1/2$$

(c)
$$8 i + 4 j$$

$$(a) - 8i + 4j$$

Q6) A uniform electric field of 400 V/m is directed at 45° above the x-axis as shown

(3,0) (cm)

in figure. The potential difference $V_A - V_B$ is given by—

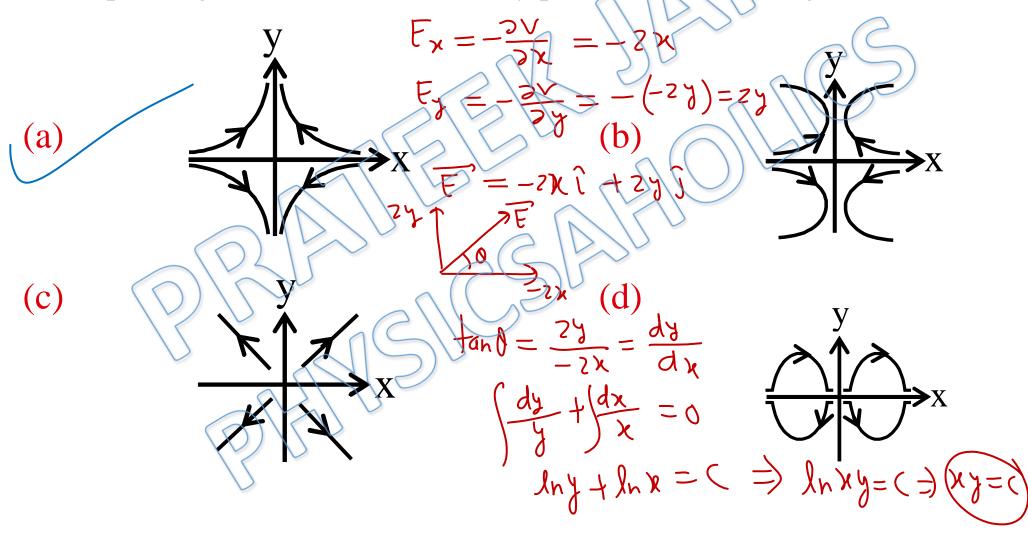
$$\overline{\Delta Y} = (-3\hat{l} + 2\hat{J})cm$$

$$(cm) \uparrow^{y} E = 400 \%$$

$$(0,2) \uparrow^{A} A = 400 \%$$

$$dV = -\overline{E} \cdot dY$$

$$= -\left(200\sqrt{2} \hat{i} + 200\sqrt{2} \hat{j}\right).$$


$$= -\left(-600\sqrt{2} + 400\sqrt{2}\right) \times 10^{2}$$

$$= -\left(-600\sqrt{2} + 400\sqrt{2}\right) \times 10^{2}$$

$$= 200\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2}$$

$$= 2\sqrt{2} \cdot \sqrt{2}$$

Q7) The potential field depends on x and y coordinates as $V = (x^2 - y^2)$. Corresponding electric field lines in x-y plane as shown in Fig -

Q8) The potential field of an electric field
$$\vec{E} = (y\hat{\imath} + x\hat{\jmath})$$
 is $\vec{F} \cdot \vec{d}\vec{Y} = (y\hat{\imath} + x\hat{\jmath}) \cdot (dx\hat{\imath} + dy\hat{\jmath})$

$$(a)V = -xy + constant$$

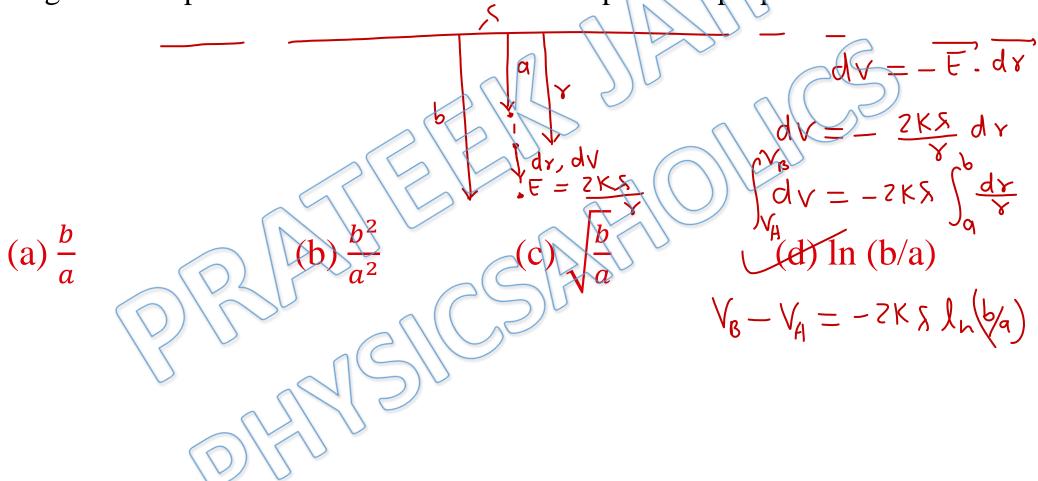
(b)
$$V = -(x + y) + constant$$

(c)
$$V = -(x^2 + y^2) + constant$$

Q9) A nonconducting ring of radius 0.5 m carries a total charge of 1.11×10^{-10} C distributed nonuniformly on its circumference, producing an electric field \vec{E} everywhere in space. The value of the line integral $\int_{l=\infty}^{l=0} -\vec{E} \cdot \vec{dl} \ (l=0)$ being the centre of the ring) in volts is $q=|l|||x||^{1/6}$

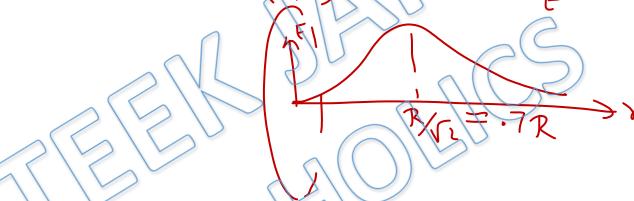
(a) +2

(b) -1


(c) -2

(d) 0

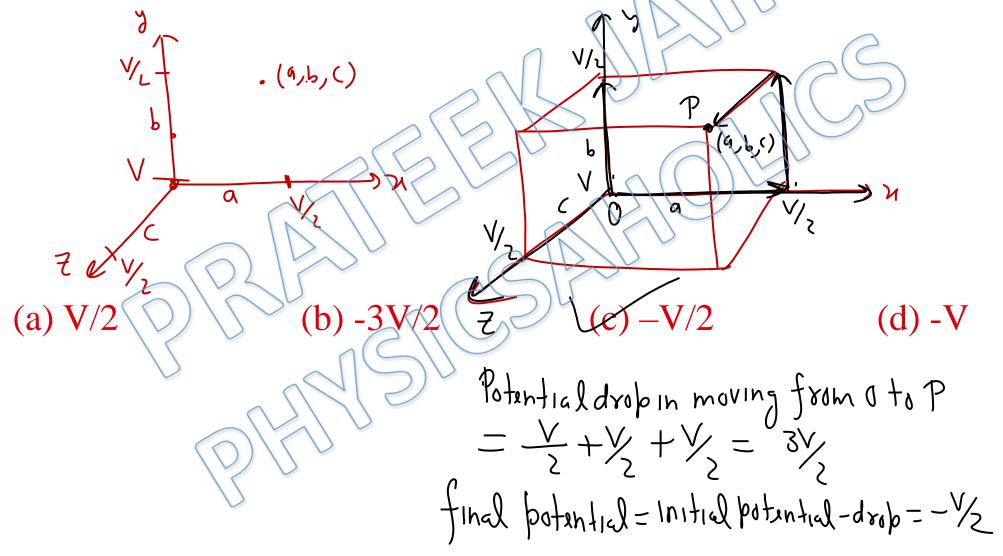
$$= \sqrt{a} \cdot \text{Centre} = \frac{\sqrt{a}}{R}$$


$$= \frac{9 \times \sqrt{a} \times 1 \cdot 11 \times \sqrt{a}}{\sqrt{s}} = 2 \text{V}$$

Q10) Two points are at distances a and b (a < b) from a long string of charge per unit length λ . The potential difference between the points is proportional to

Q11) On the axis of uniformly charged ring of radius R magnitude of rate of change

of potential is maximum at



- (a) Centre of ring
- (b) Distance .5R from centre of ring
- (c) Distance .7R from centre of ring
- (d) Distance R from ring

Q12) A conducting rod of length 1 rotates about its one end with angular velocity ω Potential difference between A and B is {m & e = mass and charge on electron}

Q13) In a uniform electric field the potential of origin is V and V/2 at each of the points (a, 0, 0), (0, b, 0), (0, 0, c). The potential at (a, b, c) will be

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-

https://youtu.be/OlriAKSU7iM

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

@Physicsaholics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS